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AbstracL A numerical lechnique k used to demonstrate lhal DLcilations of a hvo- 
dimensional superconductor of length N and finite width A4 are localized by spatial 
fluctuations in the magnitude of the order parameter A(r). Results oblained using 
numerical finite sue scaling, are consistent with the presence of a line of ctilical points 
in WO dimensions. No such behaviour is round in the presence of phase fluctuations 
only, 

1. Introduction 

There are many situations in which the order parameter A(r) of a superconductor 
vanes randomly in the space, even though the underlying normal potential is perfectly 
ordered. One example is provided by the melting of a flux lattice [l-31 in an 
otherwise perfectly crystalline high T, superconductor [4]. Another should occur in 
anisotropic superconductors, where by analogy with 'He-A, disordered textures can 
arise when an anisotropic phase is nucleated from a more symmetric phase such 
as 3He-B. 

In a high T, superconuuctor, the coherence length E,  which sets the scale for 
spatial fluctuations in A ( T ) ,  is of the order of the size of a unit cell. Therefore, 
in order to describe the properties of quasi-particle excitations in such systems, it 
is necessary to go beyond effective medium treatments of the disorder. In one 
dimension, this was carried out for the first time in [SI where it was demonstrated 
that fluctuations in a superconducting order parameter alone can localize excitations, 
even at energies high above the bulk energy gap. In this paper, we address the 
question of whether or not this new phenomenon of superconductivity induced 
Anderson localization persists in higher dimensions. 

At first sight, the answer to this question would appear to be in the affirmative. 
Preliminary calculations using a numerical finite size scaling approach [6] which 
suggested that localization in two dimensions does indeed occur, were followed by 
analytic work by Kravtsov and Oppermann [7] and by Zeigler [SI, who found that 
in the presence of time reversal symmetry, states of energy E = 0 are localized 
for dimensions d < 2, while in the absence of time reversal symmetxy, such states 
are localized in all dimensions. However, the results of [6) were obtained using 
rather small system sizes, while those of [7l used models constrained to have a 
finite density of states at E = 0. In an attempt to provide firmer evidence for 
superconductivity induced Anderson localization in two dimensions, we now report 
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the results of extensive numerical simulations, performed on long strips of finite 
width. 

V C Hui and C J Lambert 

2. Models of disorder 

'lb address the question of superconductivity induced Anderson localization, we 
make use of the Bogoliubov-de Gennes (BG) equation 

Here all energies are measured in units of chemical potential f i  = h2k2f/2m and 
all length in units of k;'. @(r)  are the particle and hole components of an 
excited state of energy E. In what follows, wc regard A(r) as given, at least in 
a probabilistic sense. For the purpose of numerical computation, we discrethe the 
Laplacian in equation (1) by introducing, in two dimensions, a square lattice with 
sites of separation a and positions rj. On such a lattice, equation (1) becomes 

(1/QZ)(2+(Tj) - @ ( V j - , )  - N T j + l ) )  - @(rj)C(rj)  = E*(rj)  P a )  

- (I/aZ)(24(Tj) -4(r,-1) - 4(~j+l))  + @(rj) t A'(r,)ll(rj) = Ed(r,). (2b) 

In this manner, discretization of equation (1) yields a nearest neighbour tight binding 
model with two degrees of freedom per site, coupled by an 'on site' particle-hole 
scattering element A(rj).. Provided a Q 1 and the energy E lies well below the 
artficial upper band edge introduced by discretization, the properties of equation (1) 
will be faithfully reproduced. 

Having placed the problem on a lattice, the aim now is to extract generic 
localization properties in two dimensions. For this purpose, we examine a lattice in 
which the order parameter Aj exp(iSj),on a given site j ,  varies randomly from site 
to site in an uncorrelated manner. As in the earlier work [5,6], two models will be 
considered, the first of which is invariant under time reversal, while the second is 
not. In model 1, Sj = 0 for all j, but Aj is uniformly distributed over the interval 
A,( 1 f 6A). In model 2, Aj = A, for all j ,  whereas B j  is uniformly distributed 
in the range G O .  In what follows, the choice A, = 1 and a = fi is made. 
Since we are concerned with the generic properties we have moved away from the 
physical limit (A, - l / a )  to gain computational efficiency (a  < 1). If localization 
for such a discrete model can be demonstrated, an appeal to universality gives one 
conRdence that localization will be present in more realistic models. 

For a long strip of N slices, each containing M sites, and for a given E and 
realization of A ( T ~ ) ,  we employ the decimation method [9-11] to compute off- 
diagonal elements of the Green function Gi,j  ( N ,  M )  between degrees of freedom 
i on slice 1 and j on slice N .  Since each site has a particle and hole degree 
of freedom, G i J ( N ,  M) is a (1M)' complex matrix. If angular brackets denote 
an ensemble average over the disorder, then the inverse localization length aM is 
defined by 
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aM = lim aM,N 
N-CO 

where 

Of course it is well-known that excitations with energy E below the disorder free 
order parameter A, can form bound states due to Andreev scattering inside the cores 
of vortices [12] and that an excitation entering a homogeneous superconductor with 
E < A, will be totally reflected [13]. However, such behaviour is a consequence 
of the presence of a gap in the density of states at these energies. 'Ib demonstrate 
localization in the Anderson sense, we must show that on average G,,,(M, N) 
decays exponentially with N, even for energies within the energy band. Therefore, 
in what follows, a node counting technique is incorporated into the decimation 
method, as described in [14], so that both a and the density of states of a system 
are obtained simultaneously. 

Once exponential localization on strips of finite width M has been demonstrated, 
information about the two-dimensional limit can be obtained by plotting graphs of 
a M M  versus M [10,11]. For a given energy and disorder, if the slope of such a 
graph is positive, then a scale change decreases the transmission probability for an 
excitation and therefore states at that energy are localized. If the slope is negative, 
then the states are extended. The case of graphs possessing a vanishing slope 
is marginal and in practice, more dilficult to interpret. Such behaviour has been 
found numerically [IO] for the two-dimensional Anderson model with weak disorder 
and has been attributed to the possible existence of a line of critical points It is 
consistent with the presence of extended states, for which the smallest Lyapunov 
exponent decreases as 1/M. In practice such behaviour may also be indistinguishable 
from a slow logarithmic increase in a,M with M, which is indicative of power 
law localization. 

- 

3. Results 

For model 1, figure 1 shows the density of states per site N( E )  of long strips of 
width M = 10, 30, 50, for 9 disorders in A ( T )  ranging from 6A = 0.1 to 0.9. 
Figure 2 shows the corresponding results for model 2 with disorder in the phase of 
A(r) ranging from 6 0  = 0 . 1 ~  to 0.9~. In these calculation strips of length N - 16 
were used. Since the density of states is a self-averaging quantity, no change in the 
computed value of N ( E )  was obtained by further increasing N. In practice, the 
node counting technique [14] yields the integrated density of states [ ( E )  at a chosen 
energy E. Figures 1 and 2 were obtained by computing I( E) at energy intervals of 
spacing A E ,  and then defining N ( E )  = ( I ( E + A E ) - I ( E ) ) / A E .  For model 1, 
E ranges from 0.8 to 1.2 in steps of A E  = 0.05, whereas for model 2, E ranges 
from 0.0 to 1.2 in steps of A E  = 0.1. For superconductors with a homogeneous 
order parameter (A(?) = A,) there is a square root singularity in the density of 
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Flgure 1. The density of states of model 1 for nine disorders bA starling from 0.1 (top 
left graphs) to 0.9 (bottom right graphs) in steps of 0.1. In  each graph, (-), (- - -) 
and (- . -) correspond to strips of width M = 10, 30 and 50 and length N is lo? 
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Figure 2. The density of states of model 2 for nine disorders 6A nrnning from O. la  
(top left graphs) to 0.9n (bollom right graphs) in sleps of 0.1~.  In each graph, (-), 
(- - -) and (- . -) correspond Lo strips of width M = 10, 30 and 50 and length N 
is IO'. 

states at energy E = A,. In the presence of disorder, figures 1 and 2 show that 
the singularity is suppressed and the energy gap is decreased through the presence 
of a L~shi tz  tail. 

Apart from the highest disorder results of model 2, figures 1 and 2 show 
that there is an energy E, > 0, below which no positive energy states are found 
numerically. For a system of width M and length N, this means that for 0 
< E < E,, N (  E) < ( N M ) - ' .  At present no theoly exists for the form of N (  E) 
at these energies. However for model 1, setting A(T) = A,(l - 6A) for all r 
yields a lower bound of Emi, = A,( 1 - 6A). For model 2, a crude estimate of the 
cut-off in the density of states can be obtained by noting that for a homogeneous 
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superconductor in the presence of a superflow U, the excitation spectrum is of the 
form 

E = IJ . k -I- \/(k2 - 1)2 -I- lAulZ (5) 

which yields a lower bound of E = A, - v. Since v is equal to the gradient of the 
phase of A(T) ,  we find that for model 2, v < 260/a. Hence Emi, = A, - 260/a. 
Both of these estimates of Emi, are lower than the computed values of Eo, which 
suggests that although states at E = E,, are possible, the probability of occurrence 
of such states is small. 

0.0 

0.0 

0 20 0 20 0 ' 20 
M 

Fiiure 3. Plots of Q M M  versus M for model 1, for nine disorders SA starling from 
0.1 (top left) 10 0.9 (bottom right). Poinls (A), (V), (+) and ( x )  correspond to E = 
0.975(A), l.O(V)+ l .OS(+) and l,l(x), N = lo5 in all cases. 

To investigate the localization properties of excitated states we follow a standard 
finite size scaling technique [ 10,111 and plot graphs of aM M versus M for various 
excitation energies E and disorders in A(T).  The results, which are shown in 
figure 3 for model 1 and figure 4 for model 2, were obtained using strips of length 
N = lo5. For model 1, we concentrate our effort on states in the band tails, at 
energies E = 0.975, 1.0, 1.05 and 1.1. For model 2, results for a range of E from 
0.0 to 1.0 are shown and for both models, M varies from 5 to 20. 
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Figure 4. Plots of c r ~ M  versus M for model 2 for nine disorders 6G running from 
0 . 1 ~  (top IeCI) IO 0 . 9 ~  (botlom right). Poinls (A), (V), (+), (x), (O), (0) and (0) 
correspond IO E = 0.0, 0.2, 0.4, 0.7. 0.8, 0.9 and 1.0. N = IO5 in all cases. 

First, we discuss the results for model 1 contained in figure 3, which shows nine 
graphs of ay M versus M corresponding to nine disorders 6A running from 0.1 
to 0.9. Apart from notable irregularities at M = 15, the results show that there 
is a tegdency for the product aM M to increase with M for all chosen values of 
E and 6A, suggesting that the states are localized. These results are similar to 
those reported in [6] .  However, the irregularities appearing at M - 15 suggest 
that the scaling regime may not yet have been reached. 'Ib check this possibility, 
values of aMM were computed for widths up to M = 100 and the three disorders 
6A = 0.5, 0.8, 0.9. These results are shown in figure 5 and reveal that the linear 
relationships between a,M and A4 for kf < 20 turn into the behaviour a,M s1 
anstant for M > 20. The horizontal lines are drawn as guides to the eye. This 
conclusion is more convincing if the same set data is plotted in graphs of aM 
versus 1/M. These results are shown in figure 6 and demonstrate an apparent 
h e a r  relationship between aM and 1/M, with a gradient which increases with 
decreasing E as well as increasing 6A. 

While the linear relationship between aM M and A4 suggests localization, a M M  
= constant k consistent with a line of critical points. On such a lie, for large N 
a( M, N )  N - N/ M, which shows that off-diagonal elemen& Gi,j (M, N )  typically 
decay exponentially with the aspect ration N / M .  As noted above, this behaviour 
is reminiscent of that found for the Anderson model in two dimensions at low 
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Figure 5. arnrM versus M for model 1, disorder 6A = 0.5 (left), 0.8 (middle) and 0.9 
(right). Points (V), (+) and (x)  correspond to E = 1.0, 1.05 and 1.1. N = 10' in all 
cases. 
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Figure 6. Using the Same set of data in figure 5 for model 1 but plotting OLM against 
IIM. 

disorder [lo]. 
Results for model 2 are given in figure 4, which shows that linear relationships 

between &,A4 and M with finite gradients can also occur for all disorders 68 
ranging from 0 . 1 ~  to 0.9~. However the density of states for this model, shown 
in figure 2, reveals that this behaviour occurs only for energies within a gap in 
the density of states. Hence the increase of cu,M with M simply reflects the 
decaying behaviour of the evanescent states within the gap. This also explains why, 
as the disorder increases and the band edge moves to lower energies, the number 
of curves in figure 4 exhibiting this behaviour decreases with increasing 6 0 .  

For all states outside the gap in the density of states, a,,, M shows no obvious 
trend as M increases. Indeed for such states, aM - 1/N, suggesting that even an 
exponential dependence on the aspect ratio does not arise for model 2. Figure 7 
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Fizum 7. Using the same set of data in figure 4 for model 2 of disorder SQ = O ~ X ,  
0.8~ and 0 . 9 ~  but Only [he resulls of non-evanescenl slates are shown. Points (x), U), 
(0) and (0) correspond lo E = 0.7, 0.8, 0.9 and 1.0. Maximum M is U). N = I$ in 
all cares. 

shows a selection of data used in figure 4 but without the results corresponding to 
evanescent states. Figure 8 shows results up to A4 = 60 for the strongest disorder 
60 = 0.9~. Unlike the results of figure 5, which clearly show non-zero limiting 
values of a , M ,  no such conclusion can be drawn from figure 8. 
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0 60 
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Figum 8. o l M M  Venus M for large M for model 2 with disorder 6 0  = 0 . 9 ~  and N 
= 105. 

4. Discussion 

The results reported in this paper are the end product of a large scale computational 
effort, involving vectorized code running for approximately 103 CPU hours on an 
Amdahl W1200. The results obtained from model 1, demonstrate that excitations 
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on a long strip of superconductor are localized due to disorder in the magnitude 
of the order parameter A(r)  and therefore the phenomenon of superconductivity 
induced Anderson localization should be present in real superconducting wires. In 
contrast, firm numerical evidence for the occurrence of localization in square samples 
has not been obtained. For model 1, which preserves time reversal symmetry, the 
results are consistent with a line of critical points. For model 2, which breaks time 
reversal symmetry, the scaling behaviour is consistent with the absence of Anderson 
localization. 

These results are consistent with the trend found in normal disordered 
systems, where the breaking of time reversal symmetly tends to delocahe states. 
Furthermore, they show that the presence of an energy gap enhances the possibility 
of Anderson localization. As noted in section 2, in regions of a depressed order 
parameter, Andreev scattering can lead to the formation of discrete bound states 
at energies below the bulk gap. The enhancement of localization in the presence 
of a gap suggests that the continuum of localized states found by our simulations, 
may arise from the hybridization of such bound states. 

It should be emphasized that the question of self-consistency and effects due 
to external magnetic fields, have not been addressed in this paper. In any real 
physical system, diagonal and off-diagonal fluctuations in the Bogoliubov-de Gennes 
equation will be correlated and it is of interest to ask if these correlations enhance 
or diminish quasi-particle localization. For the purpose of merely establishing the 
existence of superconductivity induced Anderson localization in two dimensions, we 
feel justified in neglecting such complications, but for the purpose of comparing 
results with real experiments, such effects should be included. To emphasize that 
order parameter fluctuations provide a new mechanism for localization, we have 
avoided including normal potential fluctuations in the models discussed in this 
paper. For the future, in order to gain more insight into superconductivity induced 
localization, we intend to investigate models incorporating both kinds of disorder 
and to examine trends in scaling behaviour as the normal disorder is decreased. 
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